《二次函数》知识点总结
一。 二次函数概念:
1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.
2。 二次函数的结构特征:
⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵ 是常数,是二次项系数,是一次项系数,是常数项.
二。 二次函数的图像和性质
表达式 (a≠0)
a值
图像
开口 方向
对称轴
顶点 坐标
增减性
最值
①y=ax2
a>0
向上
y轴
(0,0)
①当x>0时,y随x的增大而增大
②当x<0时,y随x的增大而减小
当x=0时,y有最小值,即=0
a<0
向下
y轴
(0,0)
①当x>0时,y随x的增大而减小
②当x<0时,y随x的增大而增大
当x=0时,y有最大值,即=0
②y=ax2+k
a>0
向上
y轴
(0,k)
①当x>0时,y随x的增大而增大
②当x<0时,y随x的增大而减小
当x=0时,y有最小值,即=k
a<0
向下
y轴
(0,k)
①当x>0时,y随x的增大而减小
②当x<0时,y随x的增大而增大
当x=0时,y有最大值,即=k
③y=a(x-h)2
a>0
向上
直线x=h
(h,0)
①当x>h时,y随x的增大而增大
②当x<0时,y随x的增大而减小
当x=h时,y有最小值,即=0
a<0
向下
直线x=h
(h,0)
①当x>h时,y随x的增大而减小
②当x<0时,y随x的增大而增大
当x=h时,y有最大值,即=0
④y=a(x-h)2+k
a>0
向上
直线x=h
(h,k)
①当x>h时,y随x的增大而增大 <
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com