设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 高一 > 正文

:高中数学人教版必修1 1.1.1正弦定理 教案

来源:快读网 编辑:秩名 时间:2020-10-16
:

1.1.1正弦定理

(一)教学目标

1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

(二)教学重、难点

重点:正弦定理的探索和证明及其基本应用。

难点:已知两边和其中一边的对角解三角形时判断解的个数。

(三)学法与教学用具

学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。

教学用具:直尺、投影仪、计算器

(四)教学设想

[创设情景]

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。 A

思考:C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B

[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又, A

则 b c

从而在直角三角形ABC中, C a B

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,

高中数学人教版必修1 1.1.1正弦定理 教案
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top