设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 高一 > 正文

:《一元二次不等式的解法》教学设计与《不等式的基本性质》教学设计

来源:快读网 编辑:秩名 时间:2020-08-29
:

《一元二次不等式的解法》教学设计与《不等式的基本性质》教学设计

《一元二次不等式的解法》教学设计

1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,设计了四个层层递进的问题

问题1:解不等式         (x-3)(x+2)

问题4:  x2 -x-6=0的根是多少?

第一个问题学生能看出用分类讨论的方法,讨论出x的范围,进而给出答案,将第一个问题中的括号去掉就得到了第二个问题,由第二个问题提出两个问题;1。这个不等式的解是什么?2。能否给这个不等式起个名字?学生能直接给出答案,直接让学生给第二个问题中的不等式起个名字,学生立马给出了答案:一元二次不等式,从而引出一元二次不等式的概念。

2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。这部分我先给出一个一元二次不等式x2 -x-6

3.启发引导——形成结论。给出3个例题 :

解下列关于   一元二次不等式

一元二次不等式的解法教学设计

总结二次不等式ax2+bx+c>0或ax2+bx+c<0 (a>0)的解的情况应该水到渠成。至此,学生可以感受到,解一元二次不等式只须1。化标准:将不等式化成标准形式(右边为0、最高次的系数为正);

2。计算判别式的值:3。求根:若判别式的值为正或零,则求出相应方程的两根;4。写解集:注意结果要写成集合或者区间的形式4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课本练习,本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

5。小结——巩固深化。

总结一元二次不等式的解法(1)图象法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+

《一元二次不等式的解法》教学设计与《不等式的基本性质》教学设计
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为docx格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

上一篇:
下一篇:

相关文章:

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top