参数方程与普通方程互化
一、教学目标:
知识与技能:掌握参数方程化为普通方程几种基本方法
过程与方法:选取适当的参数化普通方程为参数方程
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:参数方程与普通方程的互化
教学难点:参数方程与普通方程的等价性
三、教学方法:启发、诱导发现教学。
四、教学过程:
(一)、复习引入:
(1)、圆的参数方程;
(2)、椭圆的参数方程;
(3)、直线的参数方程;
(4)、双曲线的参数方程。
(二)、新课探究:
1、参数方程化为普通方程的过程就是消参过程常见方法有三种:
代入法:利用解方程的技巧求出参数t,然后代入消去参数
三角法:利用三角恒等式消去参数
整体消元法:根据参数方程本身的结构特征,从整体上消去。
化参数方程为普通方程为:在消参过程中注意变量、取值范围的一致性,必须根据参数的取值范围,确定和值域得、的取值范围。
2、探析常见曲线的参数方程化为普通方程的方法,体会互化过程,归纳方法。
(1)圆参数方程 (为参数)
(2)圆参数方程为: (为参数)
(3)椭圆参数方程 (为参数)
(4)双曲线参数方程 (为参数)
(5)抛物线参数方程 (t为参数)
(6)过定点倾斜角为的直线的参数方程
(为参数)
3、教师指导学生阅读练习册P35,理解参数方程与普通方程的区别于联系及互化要求。
(二)、例题探析
例1、【课本P40例1题】将下列参数方程化为普通方程
(1) (2)
(3) (4) (5)
例2化下列曲线的参数方程为普通方程,并指出它是什么曲线。
(1) (t是参数) (2) (是参数)
(3) (t是参数)
例3、已知圆O半径为1,P是圆上动点,Q(4,0)是轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。
(三)、巩固导练:
1、(1)方程 表示的曲线( )。
A、一
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com