课时跟踪检测(十一) 双曲线的参数方程 抛物线的参数方
一、选择题
1.曲线(t为参数)的焦点坐标是( )
A.(1,0) B.(0,1)
C.(-1,0) D.(0,-1)
解析:选B 将参数方程化为普通方程(y-1)2=4(x+1),
该曲线为抛物线y2=4x向左、向上各平移一个单位得到,
所以焦点为(0,1).
2.圆锥曲线(θ是参数)的焦点坐标是( )
A.(-5,0) B.(5,0)
C.(±5,0) D.(0,±5)
解析:选C 由(θ为参数)得 -=1,
∴它的焦点坐标为(±5,0).
3.方程(t为参数)的图形是( )
A.双曲线左支 B.双曲线右支
C.双曲线上支 D.双曲线下支
解析:选B ∵x2-y2=e2t+2+e-2t-(e2t-2+e-2t)=4。
且x=et+e-t≥2=2。
∴表示双曲线的右支.
4.点Μ0(0,2)到双曲线x2-y2=1的最小距离(即双曲线上任一点Μ与点Μ0的距离的最小值)是( )
A.1 B.2 C。 D.3
解析:选C ∵双曲线方程为x2-y2=1,∴a=b=1。
∴双曲线的参数方程为(θ为参数).
设双曲线上一动点为Μ(sec θ,tan θ),
则2=sec2θ+(tan θ-2)2
=(tan2θ+1)+(tan2θ-4tan θ+4)
=2tan2θ-4tan θ+5=2(tan θ-1)2+3。
当tan θ=1时,2取最小值3,
此时有=。
二、填空题
5.已知动圆方程x2+y2-xsin 2θ+2y·sin=0(θ为参数).则圆心的轨迹方程是________.
解析:圆心轨迹的参数方程为
即消去参数,得
y2=1+2x。
答案:y2=1+2x
6.双曲线(θ为参数)的两条渐近线的倾斜角为________.
解析:将参数方程化为y2-=1,
此时a=1,b=,
设渐近线倾斜角为α,则tan α=±=±。
∴α
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com