《等差数列的前n项和》说课稿
一、教材结构与内容简析
本节内容选自普遍高中课程标准实验教科书(北师大版) 必修5 第一章第四节 等差数列的前n项和第一课时,是在学生学习了等差数列定义及通项公式的基础上学习和研究的,是进一步学习其它数列知识的基础。等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。
二、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
认知目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。
能力目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
情感目标:获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
三、教学重点、难点
教学重点: 等差数列前n项和公式
教学难点:获得等差数列前n项和公式推导的思路
四、教法和学法
教法:采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“等差数列前n项和公式发现”为基本探究内容,让学生的思维由问题开始,到猜想的得出,猜想的探究,公式的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——推导——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对等差数列前n项和公式的探究。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。
五、教学程序
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半。因此,我通过对实际问题的引入,使学生一开始就能对这节课所研究的问题引起兴趣,使其立刻进入到研究者的角色中来,并从这一简单的例子进入我们今天的课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例高斯问题入手进行研究,发现差
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com