二次函数
结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系;
重点:能够表示简单变量之间的二次函数关系.
难点:理解二次函数的有关概念.
一、自学指导.(10分钟)
自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.
总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、反比例函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=(k为常数,且k≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
1.下列函数中,是二次函数的有A,B,C.
A.y=(x-3)2-1
B.y=1-x2
C.y=(x+2)(x-2)
D.y=(x-1)2-x2
2.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.
3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).
点拨精讲:判断二次函数关系要紧扣定义.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)
探究1 若y=(b-2)x2+4是二次函数,则b≠2.
探究2 某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.
(1)求y与x之间的函数关系式;
(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?
解:(1)y=-10x2+1400x-40000(50(2)由题意得:-10x2+1400x-40000=8000。
化简得:x2-140x+4800=0,∴x
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com