专题二 几何图形的折叠或旋转
毕节中考备考攻略
纵观近5年毕节中考数学试卷,几何图形的折叠或旋转是每年的必考内容,其中2014年第20题、2015年第8题考查三角形的折叠,2016年第15题考查正方形的折叠,2017年第14题结合正方形考查三角形的旋转,2018年第14题考查三角形的折叠.预计2019年将继续考查几何图形的折叠或旋转.
1.折叠的实质是轴对称 变换,折痕所在的直线就是对称轴,折叠前后的图形全等,即对应边、对应角分别相等.
2.旋转前后的图形全等,对应边、对应角分别相等,对应点与旋转中心所连线段的夹角等于旋转角.
中考重难点突破
几何图形的折叠
例1 (2018•天门中考)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( C )
A.1 B.1.5 C.2 D.2.5
【解析】连接AE.由几何图形折叠前后的图形全等,结合正方形的性质可得BG=FG,AB=AD=AF,∠D=∠B=∠AFE=90°.利用HL可得Rt△AFE≌Rt△ADE,由此可得EF=DE.由点G是BC的中点,可得FG=CG=3,则GE=3+DE.在Rt△ECG中,∠C=90°,CG=3,GE=3+DE,CE=6-DE,根据勾股定理,得(6-DE)2+32=(3+DE)2,解方程即 可得到DE的长.
几何图形的旋转
例2 (2018•自贡中考)如图,在边长为a的正方形ABCD中,把边BC绕点B逆时针旋转6 0°,得到线段BM ,连接AM并延长,交CD于点N,连接MC,则△MNC的面积为( C )
A.3-12a2 B.2-12a2 &nb
文档为rar格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com