图形的旋转
1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.
2。 掌握根据需要用旋转的知识设计出美丽的图案.
重点:用旋转的有关知识画图.
难点:根据需要设计美丽图案.
一、自学指导.(15分钟)
1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.
点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′。
探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.
把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.
1.旋转中心不变,改变旋转角.
2.旋转角不变,改变旋转中心.
我们可以设计成如下图美丽的图案.
归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)
如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)
1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③。
2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.
解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.
所以PP′===3。
解题的关键是确定AP与AP′垂直且相等.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com