设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 高考试题 > 数学 > 正文

:2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练64

来源:快读网 编辑:秩名 时间:2020-04-07
:

随堂巩固训练(64)

1。在数列{an}中,若a1=2,an+1=an+n+1,则数列{an}的通项公式an=+1。

解析:由题意得,当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+(2+3+…+n)=2+=+1。又a1=2=+1,符合上式,因此an=+1。

2。在数列{an}中,若a1=1,an=an-1(n≥2),则数列{an}的通项公式an=。

解析:方法一:因为an=an-1(n≥2),所以an-1=×an-2,…,a2=a1,累乘得an=1×××…×=。

方法二:因为an=×××…×××a1=×××…×1=。

3。在数列{an}中,若an+1=2an+3,a1=1,则数列{an}的通项公式an=2n+1-3。

解析:由题意得an+1+3=2(an+3)。令bn=an+3,则b1=a1+3=4,且==2,所以数列{bn}是以4为首项,2为公比的等比数列,所以bn=4×2n-1=2n+1,所以an=2n+1-3。

4。已知数列{an}满足a1=1,a2=4,an+2+2an=3an+1(n∈N*),则数列{an}的通项公式an=3×2n-1-2。

解析:由an+2+2an-3an+1=0,得an+2-an+1=2(an+1-an),所以数列{an+1-an}是以a2-a1=3为首项,2为公比的等比数列,所以an+1-an=3×2n-1,当n≥2时,an-an-1=3×2n-2,…,a3-a2=3×2,a2-a1=3,将以上各式累加得an-a1=3×2n-2+…+3×2+3=3(2n-1-1),所以an=3×2n-1-2(当n=1时,也满足)。

5。在数列{an}中,a1=3,an+1=an+,则数列{an}的通项公式an=4-W。

解析:原递推公式可化为an+1=an+-,则a2=a1+-,a3=a2+-,a4=a3+-,…,an-1=an-2+-,an=an-1+-,逐项相加得an=a1+1-,故an=4-。

2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练64
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为docx格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top