设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 中考试题 > 数学 > 正文

:2020年中考数学真题分类汇编第三期专题32正多边形与圆试题含解析

来源:快读网 编辑:秩名 时间:2020-04-22
:正多边形与圆
填空题
1.(2018·云南省昆明·3分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为 ﹣ (结果保留根号和π).
【分析】正六边形的中心为点O,连接OD.OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.
【解答】解:正六边形的中心为点O,连接OD.OE,作OH⊥DE于H,
∠DOE==60°,
∴OD=OE=DE=1,
∴OH=,
∴正六边形ABCDEF的面积=×1××6=,
∠A==120°,
∴扇形ABF的面积==,
∴图中阴影部分的面积=﹣,
故答案为:﹣.
【点评】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.
2. (2018•呼和浩特•3分)同一个圆的内接正方形和正三角形的边心距的比为   .
解:设⊙O的半径为r,⊙O的内接正方形ABCD,如图,
过O作OQ⊥BC于Q,连接OB.OC,即OQ为正方形ABCD的边心距,
∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
∴O为正方形ABCD的中心,
∴∠BOC=90°,
∵OQ⊥BC,OB=CO,
∴QC=BQ,∠COQ=∠BOQ=45°,
∴OQ=OC×cos45°=R;
设⊙O的内接正△EFG,如图,
过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
∵正△EFG是⊙O的外接圆,
∴∠OGF=∠EGF=30°,
∴OH=OG×sin30°=R,
∴OQ:OH=(R):(R)=:1,
故答案为::1.
3. (2018•莱芜•4分)如图,正方形ABCD的边长为2a,E为BC边的中点,、的圆心分别在边AB.CD上,这两段圆弧在正方形内交于点F,则E.F间的距离为  .
【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接G
2020年中考数学真题分类汇编第三期专题32正多边形与圆试题含解析
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top