设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 九年级 > 正文

:九年级数学下册第二十七章相似27-2相似三角形27-2-1相似三角形的判定第两个三角形相似教案新版新人教版

来源:快读网 编辑:秩名 时间:2020-08-25
:

27。2。1 相似三角形的判定

第4课时 两角分别相等的两个三角形相似

1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)

2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)

一、情境导入

与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A ′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C与∠C′相等吗?对应边的比,,相等吗?这样的两个三角形相似吗?和同学们交流.

二、合作探究

探究点:两角分别相等的两个三角形相似

【类型一】 利用判定定理证明两个三角形相似

如图,在等边△ABC中,D为BC边上一点,E为AB边上一点,且∠ADE=60°。

(1)求证:△ABD∽△DCE;

(2)若BD=3,CE=2,求△ABC的边长.

解析:(1)由题有∠B=∠C=60°,利用三角形外角的知识得出∠BAD=∠CDE,即可证明△ABD∽△DCE;(2)根据△ABD∽△DCE,列出比例式,即可求出△ABC的边长.

(1)证明:在△ABD中,∠ADC=∠B+∠BAD,又∠ADC=∠ADE+∠EDC,而∠B=∠ADE=60°,∴∠BAD=∠CDE。在△ABD和△DCE中,∠BAD=∠CDE,∠B=∠C=60°,∴△ABD∽△DCE;

(2)解:设AB=x,则DC=x-3,由△ABD∽△DCE,∴=,∴=,∴x=9。即等边△ABC的边长为9。

方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.

变式训练:见《学练优》本课时练习“课堂达标训练” 第5题

【类型二】 添加条件证明三角形相似

如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为____________.

解析: ∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,故添加条件∠A

九年级数学下册第二十七章相似27-2相似三角形27-2-1相似三角形的判定第两个三角形相似教案新版新人教版
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top