28.1锐角三角函数
第2课时 余弦函数和正切函数
【学习目标】
⑴感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
⑵逐步培养学生观察、比较、分析、概括的思维能力。
重点、难点:
【学习重点】
理解余弦、正切的概念。
【学习难点】
熟练运用锐角三角函数的概念进行有关计算。
【导学过程】
一、自学提纲:
1、我们是怎样定义直角三角形中一个锐角的正弦的?
E
O
A
B
C
D
·
2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。
已知AC=,BC=2,那么sin∠ACD=( )
A. B. C. D.
3、如图,已知AB是⊙O的直径,点C、D在⊙O上,
且AB=5,BC=3.则sin∠BAC= ;sin∠ADC= .
4、在Rt△ABC中,∠C=90°,当锐角A确定时,
∠A的对边与斜边的比是 ,
现在我们要问:
∠A的邻边与斜边的比呢?
∠A的对边与邻边的比呢?
为什么?
二、合作交流:
探究:
一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?
如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠B=∠B`=α,
那么与有什么关系?
三、教师点拨:
类似于正弦的情况,
如图在Rt△BC中,∠C=90°,当锐角A的大小确定时,∠A的邻边与斜边的比、∠A的对边与邻边的比也分别是确定的.我们
把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA==;
把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA==.
例如,当∠A=30°时,我们有cosA=cos30°= ;
当∠A=45°时,我们有tanA=tan45°= .
(教师讲解并板书):锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
对于锐角
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com