28.1锐角三角函数
第1课时 正弦函数
1.能根据正弦概念正确进行计算;(重点)
2.能运用正弦函数解决实际问题.(难点)
一、情境导入
牛庄打算新建一个水站,在选择水泵时,必须知道水站(点A)与水面(BC)的高度(AB).斜坡与水面所成的角(∠C)可以用量角器测出来,水管的长度(AC)也能直接量得.
二、合作探究
探究点一:正弦函数
如图,sinA等于( )
A.2 B。 C。 D。
解析:根据正弦函数的定义可得sinA=,故选C。
方法总结:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA。即sinA==。
变式训练:见《学练优》本课时练习“课堂达标训练” 第2题
探究点二:正弦函数的相关应用
【类型一】 在网格中求三角函数值
如图,在正方形网格中有△ABC,则sin∠ABC的值等于( )
A。 B。 C。 D.10
解析:∵AB=,BC=,AC=,∴AB2=BC2+AC2,∴∠ACB=90°,∴sin∠ABC===。故选B。
方法总结:解决有关网格的问题往往和勾股定理及其逆定理相联系,根据勾股定理求出三边长度,再运用勾股定理的逆定理判断三角形形状.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题
【类型二】 已知三角函数值,求直角三角形的边长
在Rt△ABC中,∠C=90°,BC=4,sinA=,则AB的长为( )
A。 B.6 C.12 D.8
解析:∵sinA===,∴AB=6。故选B。
方法总结:根据正弦定义表示出边的关系,然后将数值代入求解,记住定义是解决问题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练” 第6题
【类型三】 三角函数与等腰三角形的综合
已知等腰三角形的一条腰长为25cm,底边长为30cm,求底角的正弦值.
解析:先作底边上的高AD,根据等腰三角形三线合一的性质得到BD=BC=15cm,再由勾股定理求出AD,然后根据三角函数的定义求解.
解:如图,过点A作AD⊥BC,垂足为D。∵AB=AC=25cm
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com