【课时训练】第39节直线、平面垂直的判定与性质
一、选择题
1.(2018银川模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现沿AE、AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()
A.AH⊥平面EFHB.AG⊥平面EFH
C.HF⊥平面AEFD.HG⊥平面AEF
【答案】A
【解析】由平面图形可得AH⊥HE,AH⊥HF,又HE∩HF=H,∴AH⊥平面HEF。故选A。
2.(2019惠州调研)设α,β,γ为不同的平面,m,n,l为不同的直线,则m⊥β的一个充分条件为()
A.α⊥β,α∩β=l,m⊥lB.α∩γ=m,α⊥γ,β⊥γ
C.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α
【答案】D
【解析】若α⊥β,α∩β=l,m⊥l,则m与β的位置不确定;若α∩γ=m,α⊥γ,β⊥γ,则α,β可能平行,此时m∥β;若α⊥γ,β⊥γ,m⊥α,则α,β不一定平行,则m不一定与β垂直;若n⊥α,n⊥β,则α∥β,则m⊥β。故选【答案】D。
3.(2018黄冈质检)已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m,n与α所成的角相等,则m∥n;④若m∥α,α∩β=n,则m∥n。
其中正确命题的个数是()
A.1B.2
C.3D.4
【答案】B
【解析】对于①,若m∥n,m⊥α,则n⊥α,故该命题为真命题;对于②,若m⊥α,m⊥β,则α∥β,故该命题为真命题;对于③,若m,n与α所成的角相等,则m与n可能平行、相交或异面,故该命题为假命题;对于④,若m∥α,α∩β=n,则m与n的位置关系不确定,故该命题为假命题.故选【答案】B。
4.(2018宝鸡质检)对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;
②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
附近文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com