专题7数列的综合应用测试题
命题报告:
1。高频考点:等差数列、等比数列的综合,数列与函数的、不等式、方程等的综合
考情分析:数列的综合问题在近几年的高考试题中一直比较稳定,难度中等,主要命题点是等差数列和等比数列的综合,数列和函数、方程、不等式的综合,与数列有关的探索性问题以及应用性问题等,对于数学文化为背景的数列问题需要特别关注。
3。重点推荐:基础卷第2、7等,涉及新定义和数学文化题,注意灵活利用所给新定义以及读懂题意进行求解。
一.选择题(共12小题,每一题5分)
1。(2018春•广安期末)在等差数列{an}中,a2=3,若从第7项起开始为负,则数列{an}的公差d的取值范围是()
A.[﹣,﹣)B.[﹣,+∞)C.(﹣∞,﹣)D.(,]
【答案】:A
【解析】,解得﹣≤d<﹣.故选:A.
2。(2018•永定区校级月考)定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列an,{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:①f(x)=x3;②f(x)=3x;③;④f(x)=lgx,则其中是“保等比数列函数”的f(x)的序号为()
A.①②B.①③C.②④D.③④
【答案】B
【解析】由任意给定的等比数列an,公比设为q,
定义在(0,+∞)上的如下函数:①f(x)=x3;
=q,即有==q3为常数,
则f(x)为“保等比数列函数”;
②f(x)=3x;
=q,即有==3不为常数,
则f(x)不为“保等比数列函数”;
3。(2018•黄冈期末)数列{an}满足an+1=,若a1=,则a2018=()
A.B.C.D.
【答案】A
【解析】:an+1=,a1=∈[,1),
∴a2=2a1﹣1=∈[0,),
∴a3=2a2=2×=∈[0,),
∴a4=2a3=∈[,1),
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
附近文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com