:温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
课时提升作业 十四
双曲线方程及性质的应用
一、选择题(每小题5分,共25分)
1.(2015·全国卷Ⅰ)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·<0>
A. B.
C. D.
【解析】选A.因为F1(-,0),F2(,0),-=1,
所以·=(--x0,-y0)·(-x0,-y0)=+-3<0>
即3-1<0 br=>2.(2016·重庆高二检测)已知双曲线x2-y2=2,过定点P(2,0)作直线l与双曲线有且只有一个交点,则这样的直线l的条数为 ( )
A.1 B.2 C.3 D.4
【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.
【补偿训练】过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,若|AB|=16,这样的直线有 ( )
A.一条 B.两条 C.三条 D.四条
【解析】选C.过右焦点且垂直于x轴的弦长为16,因为|AB|=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.
3.(2016·
泉州高二检测)若曲线C上存在点M,使M到平面内两点A(-5,0),B(5,0)距离之差为8,则称曲线C为“好曲线”.以下曲线不是“好曲线”的是 ( )
A.x+y=5 B.x2+y2=9
C.+=1 D.x2=16y
【解析】选B.因为M到平面内两点A(-5,0),B(5,0)距离之差为8,所以M的轨迹是以A(-5,0),B(5,0)为焦点的双曲线的右支,方程为-=1(x≥4),A:直线x+y=5过点(5