5.6 应用一元一次方程——追赶小明 教学要求 1.能分析行程问题中已知数与未知数之间的数量关系,利用路程、时间与速度三个量之间的关系式,列出一元一次方程a解应用题. 2.会用“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,培养分析问题、解决问题的能力,进一步体会方程模型的作用.
学习目标 1、借助表格分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题, 并要求学生进一步明确必须检验方程的解是否符合题意。 2、通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。培养学生具有数学知识,增强学生探究、推理数学的能力;培养学生的数学兴趣,协助学生发展逻辑思维的能力,并能应用数学解决日常生活中的问题。
教学目标 1.理解成本、售价、利润、利润率之间的数量关系,并能复述。 2.能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。 3.通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活中的打折现象,理性消费。 4.会从问题情境中探索等量关系,经历和体验运用一元一次方程解决实际问题的过程,培养抽象、概括、分析问题、解决问题的能力。
5.4 应用一元一次方程——打折销售 教学要求 1.能列出一元一次方程解决打折销售问题. 2.了解用一元一次方程解决实际问题的一般步骤. 3.进一步建立运用方程解决实际问题的过程,培养逻辑思维能力.
5.3 应用一元一次方程——水箱变高了 一、学生起点分析 本节课涉及到图形问题,关键是让学生抓住形变过程中的不变量,对于基本图形的体积、面积、周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习。
5.3 应用一元一次方程——水箱变高了 教学要求 1.通过分析图形问题中的数量关系,运用方程解决问题,进一步体会运用方程解决问题的关键是抓住等量关系,并认识方程的重要性. 2.通过对“变化中的不变量”的分析,提高分析问题、解决问题的能力.
教学关键点 1、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性. 2、掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.
教学重点与难点 重点:理解和应用等式的性质。 难点:应用等式的性质,把简单的一元一次方程化为“x=a”的形式。
教学目标 1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 3、培养学生获取信息,分析问题,处理问题的能力。
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com