第2课时 平面直角坐标系中的位似
学习目标
1.巩固位似图形及其有关概念.
2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.
重点、难点
1.重点:用图形的坐标的变化来表示图形的位似变换.
2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
一。创设情境
活动1 教师活动:提出问题:
(1)如图27。3-4(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?
图27。3-4
(2)如图27。3-4(2),△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
活动: 学生小组讨论,共同交流,回答结果.
【归纳】 ______________________________________________
二、应用例题
如图,将四边形ABCD先向左平移3个单位,再向下平移3个单位,那么点D的对应点D′的坐标是( )
A.(0,1) B.(6,1) C.(6,-1)D.(0,-1)
三、 课堂练习
如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).
(1)请画出△ABC关于x轴对称的△A1B1C1.
(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出△A2B2C2.
(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1:S△A2B2C2=_______。(不写解答过程,直接写出结果).
活动4
1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△A
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com