设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 九年级 > 正文

:26.3实际问题与二次函数(2)教案

来源:快读网 编辑:秩名 时间:2020-08-08
:

26。3实际问题与二次函数(2)

教学目标

1.复习巩固用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

2.使学生掌握已知抛物线的顶点坐标或对称轴等条件求出函数的关系式。

重点难点:

根据不同条件选择不同的方法求二次函数的关系式是教学的重点,也是难点。

教学过程:

一、复习巩固

1.如何用待定系数法求已知三点坐标的二次函数关系式?

2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)。 (1)求二次函数的关系式,

(2)画出二次函数的图象; (3)说出它的顶点坐标和对称轴。

答案:(1)y=x2+x+1,(2)图略,(3)对称轴x=-,顶点坐标为(-,)。

3.二次函数y=ax2+bx+c的对称轴,顶点坐标各是什么?

[对称轴是直线x=-,顶点坐标是(-,)]

二、范例

例1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。

分析:二次函数y=ax2+bx+c通过配方可得y=a(x+h)2+k的形式称为顶点式,(-h,k)为抛物线的顶点坐标,因为这个二次函数的图象顶点坐标是(8,9),因此,可以设函数关系式为: y=a(x-8)2+9

由于二次函数的图象过点(0,1),将(0,1)代入所设函数关系式,即可求出a的值。

请同学们完成本例的解答。

练习:P18练习1.(2)。

例2.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

解法1:设所求二次函数的解析式是y=ax2+bx+c,因为二次函数的图象过点(0,-5),可求得c=-5,又由于二次函数的图象过点(3,1),且对称轴是直线x=2,可以得

解这个方程组,得: 所以所求的二次函数的关系式为y=-2x2+8x-5。

解法二;设所求二次函数的关系式为y=a(x-2)2+k,由于二次函数的图象经过(3,1)和(0,-5)两点,可以得到 解这个方程组,得:

所以,所求二次函数的关系式为y=-2(x-2)2+3,即y=-2x2+8x-5。

例3。已知抛物线的

26.3实际问题与二次函数(2)教案
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

上一篇: 27.1相似三角形教案设计
下一篇: 26.3实际问题与二次函数(1)教案
热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top