设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 中考试题 > 数学 > 正文

:2020年中考数学真题分类汇编第二期专题39开放性问题试题含解析

来源:快读网 编辑:秩名 时间:2020-04-21
:开放性问题
一.选择题
1.(2018•贵州铜仁•4分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x= 4 .
【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.
【解答】解:∵4※x=42+x=20,
∴x=4.
故答案为:4.
二.解答题
1.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
①构造一个真命题,画图并给出证明;
②构造一个假命题,举反例加以说明.
【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形.
【解答】解:(1)①④为论断时:
∵AD∥BC,∴∠DAC=∠BCA,∠ADB=∠DBC.
又∵OA=OC,∴△AOD≌△COB.∴AD=BC.∴四边形ABCD为平行四边形.
(2)②④为论断时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.
【点评】本题主要考查平行四边形的判定,学生注意常用等腰梯形做反例来推翻不是平行四边形的判断.
2. (2018·湖北省恩施·12分)如图,已知抛物线交x轴于A.B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)P为坐标平面内一点,以B.C.D.P为顶点的四边形是平行四边形,求P点坐标;
(3)若抛物线上有且仅有三个点M1.M2.M3使得△M1BC.△M2BC.△M3BC的面积均为定值S,求出定值S及M1.M2.M3这三个点的坐标.
【分析】(1)由OC与OB的长,确定出B与C的坐标,再由A坐标,利用待定系数法确定出抛物线解析式即可;
(2)分三种情况讨论:当
2020年中考数学真题分类汇编第二期专题39开放性问题试题含解析
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top