3。2简单的三角恒等变换(三)
教学目标
(一) 知识与技能目标
熟练掌握三角公式及其变形公式.
(二) 过程与能力目标
抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.
(三) 情感与态度目标
培养学生观察、分析、解决问题的能力.
教学重点
和、差、倍角公式的灵活应用.
教学难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.
教学过程
例1:教材P141面例4
例1。 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形。记∠COP=a,求当角a取何值时,矩形ABCD的面积最大?并求出这个最大面积。
θ
例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)
解:(1)如图,设矩形长为l,则面积,
所以当且仅当
即时,取得最大值,此时S取得最大值,矩形的宽为
即长、宽相等,矩形为圆内接正方形。
(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为
、,所以面积。
而,所以,当且仅当时,S取最大值,所以当且仅当即时, S取最大值,此时矩形为内接正方形。
P
Q
R
S
O
变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.
解:设则
故S四边形PQRS
故为时,
课堂小结
建立函数模型利用三角恒等变换解决实际问题。
课后作业
1。 阅读教材P。139到P。142; 2。 《习案》作业三十五。
2
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com