二次函数与相似三角形综合题
教学目标:
1、会求二次函数解析式;
2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。
教学重点:
1、求二次函数解析式;
2、相似三角形的判定与性质在二次函数综合题中的运用。
教学难点:
根据条件构造相似三角形解决问题。
情感与态度:
1、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。
2、使学生感受在数学学习活动中获得成功的体验,锻炼学生克服困难的意志,建立自信心。
3、培养学生科学探索的精神。
教学过程:
一、复习巩固
如图,抛物线y=ax2+bx-2与x轴交于点A(-1,0),B(m,0)两点,与y轴交于C点,且∠ACB=90°,求抛物线的解析式。
分析:OC2=OA·OB∴4=1×m,m=4∴B(4,0)
设抛物线解析式为y=a(x+1)(x-4)
代入C点(0,-2)
∴抛物线解析式为。
二、新授
例题、如图,直线y=-x+3与x轴、y轴分别相交于B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴另一交点为A,顶点为P,且对称轴是直线x=2,
(1)求抛物线解析式;
(2)连结AC,请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ACB相似,若存在,请求出Q点坐标;若不存在,说明理由。
(3)D点为第四象限的抛物线上一点,过点D作DE⊥x轴,交CB于E,垂足于H,过D作DF⊥CB,垂足为F,交x轴于G,试问是否存在这样的点D,使得△DEF的周长恰好被x轴平分?若能,请求出D点坐标;若不能,请说明理由。
[解](1)直线与轴相交于点,
当时,,
点的坐标为.
又抛物线过轴上的两点,且对称轴为,
根据抛物线的对称性,
点的坐标为.
过点,易知,
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
附近文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com