则函数的解析式为
A. B.
C. D.
【答案】C
【解析】
【分析】
根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.
【详解】由图象知A=1,(),即函数的周期T=π,
则π,得ω=2,
即g(x)=sin(2x+φ),
由五点对应法得2φ=2kπ+π,k,得φ,
则g(x)=sin(2x),
将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,
即f(x)=sin[2(x)]=sin(2x)=,
故选:C.
【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.
2.已知中,,,则的值是( )
A. B. C. D.
【答案】A
【解析】
【分析】
利用三角函数恒等变换的应用化简已知等式可得,根据正弦定理,余弦定理化简整理可得:,结合已知,解得,可得为锐角,进而利用余弦定理可求的值,利用同角三角函数基本关系式可求结果.
【详解】
,
∴,
∴,可得:,
整理可得:,
又 ,
∴,解得,可得为锐角,
∴,可得:,,
故选A.
【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的应用,考查了转化思想,属于基础题.