:热点专项练(四) 解直角三角形应用
类型一 测宽
1.
(2018·青海)如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,2≈1.414,3≈1.732).
解过C作CE⊥AB于E,设CE=x米.
Rt△AEC中,∠CAE=45°,AE=CE=x.
在Rt△BEC中,∠CBE=30°,BE=3CE=3x.
∴3x=x+60.解得x=303+30≈81.96米.
答:河宽为81.96米.
类型二 测高
2.
(2018·云南昆明)小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10 m,隧道高6.5 m(即BC=6.5 m),求标语牌CD的长.(结果保留小数点后一位)
(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90,3≈1.73)
解如图,连接CB,过点A作AE⊥BD于E,
在Rt△AEB中,∵∠EAB=30°,AB=10m,
∴AE=ABcos30°=10×32=53(m),BE=ABsin30°=10×12=5(m).
∵BC=6.5m,
∴CE=BC-BE=6.5-5=1.5(m),
在Rt△ADE中,
∵∠EAD=42°,AE=53,
∴DE=AE·tan42°=53×0.9≈5×1.73×0.9=7.785(m),∴CD=DE-CE≈7.785-1.5=6.285≈6.3(m).
类型三 航行类
3.
(2018·四川眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,