1.知识与技能
学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.
2.过程与方法 感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.
3.情感、态度与价值观
体验函数思想在解决实际问题中的应用,养成用数学的良好习惯
重点难点
重点:用反比例函数解决实际问题.
难点:构建反比例函数的数学模型
教学准备
教师准备
是否需要课件
学生准备
教学过程设计
(一)创设情境,导入新课
公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.
为此,他留下一句名言:给我一个支点,我可以撬动地球!
(二)合作交流,解读探究
问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别是1200N和0。5m.
(1)动力F和动力臂L有怎样的函数关系?当动力臂为1。 5m时,撬动石头至少要多大的力?
(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?
【分析】 (1)由杠杆定律有FL=1200×0。5,即F=,当L=1。5时,F==400.
(2)由(1)及题意,当F=×400=200时,L==3(m),
∴要加长3-1。5=1。5(m).
思考 你能由此题,利用反比例函数知识解释:为什么使用撬棍时,动力臂越长越省力?
联想 物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2 ,也可写为P= .
(三)应用迁移,巩固提高
例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com