设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 九年级 > 正文

:人教版九年级数学上册24.1 圆(第2课时)教案

来源:快读网 编辑:秩名 时间:2020-09-05
:

24。1 圆(第2课时)

教学内容

1.圆心角的概念.

2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.

教学目标

了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.

通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.

重难点、关键

1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.

2.难点与关键:探索定理和推导及其应用.

教学过程

一、复习引入

(学生活动)请同学们完成下题.

已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.

老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.

二、探索新知

如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.

(学生活动)请同学们按下列要求作图并回答问题:

如图所示的⊙O中,分别作相等的圆心角∠AOB和∠A′OB′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?

6

=,AB=A′B′

理由: 半径OA与O′A′重合,且∠AOB=∠A′OB′

∴半径OB与OB′重合

点A与点A′重合,点B与点B′重合

∴与重合,弦AB与弦A′B′重合

∴=,AB=A′B′

因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.

在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作.

人教版九年级数学上册24.1 圆(第2课时)教案
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top