设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 九年级 > 正文

:人教版九年级数学上册23.2 中心对称(3)教案

来源:快读网 编辑:秩名 时间:2020-08-22
:

23。2 中心对称(3)

第三课时

教学内容

1.中心对称图形的概念.

2.对称中心的概念及其它们的运用.

教学目标

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.

重难点、关键

1.重点:中心对称图形的有关概念及其它们的运用.

2.难点与关键:区别关于中心对称的两个图形和中心对称图形.

教具、学具准备

小黑板、三角形

教学过程

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

(2)延长AO使OC=AO,

延长BO使OD=BO,

连结CD

则△COD为所求的,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°

5

,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它重合.

上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.

AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.

老师点评:老师边提问学生边解答. <

人教版九年级数学上册23.2 中心对称(3)教案
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top