设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 九年级 > 正文

:人教版九年级数学上册22.2用函数的观点看一元二次方程(1)教案

来源:快读网 编辑:秩名 时间:2020-09-05
:

22。2 用函数的观点看一元二次方程(1)

教学目标:

1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。

2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。

3.进一步培养学生综合解题能力,渗透数形结合思想。

重点难点:

重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点。

难点:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.

教学过程:

一、引言

在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,请同学们共同研究,尝试解决以下几个问题。

二、探索问题

问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0。8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。

根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+。

(1)喷出的水流距水平面的最大高度是多少? (最大值)

(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内? (就是求如图(2)B点的横坐标)

问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1。6m时,涵洞顶点与水面的距离为2。4m。这时,离开水面1。5m处,涵洞宽ED是多少?是否会超过1m?

教学要点

4

1.教师分析:根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D的横坐标。

解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。

这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y

人教版九年级数学上册22.2用函数的观点看一元二次方程(1)教案
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top