22。2 用函数的观点看一元二次方程(1)
教学目标:
1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。
3.进一步培养学生综合解题能力,渗透数形结合思想。
重点难点:
重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点。
难点:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.
教学过程:
一、引言
在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,请同学们共同研究,尝试解决以下几个问题。
二、探索问题
问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0。8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+。
(1)喷出的水流距水平面的最大高度是多少? (最大值)
(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内? (就是求如图(2)B点的横坐标)
问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1。6m时,涵洞顶点与水面的距离为2。4m。这时,离开水面1。5m处,涵洞宽ED是多少?是否会超过1m?
教学要点
4
1.教师分析:根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D的横坐标。
解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。
这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com