教学时间
课题
《二次函数》小结与复习(1)
理解二次函数的概念,掌握二次函数y=ax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。
用配方法求二次函数的顶点、对称轴,根据图象概括二次函数y=ax2图象的性质。
教学难点
二次函数图象的平移。
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、结合例题精析,强化练习,剖析知识点
1.二次函数的概念,二次函数y=ax2 (a≠0)的图象性质。
例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?
学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。
教师精析点评,二次函数的一般式为y=ax2+bx+c(a≠0)。强调a≠0.而常数b、c可以为0,当b,c同时为0时,抛物线为y=ax2(a≠0)。此时,抛物线顶点为(0,0),对称轴是y轴,即直线x=0。
(1)使是关于x的二次函数,则m2+m-4=2,且m+2≠0,即:
m2+m-4=2,m+2≠0,解得;m=2或m=-3,m≠-2
(2)抛物线有最低点的条件是它开口向上,即m+2>0,
(3)函数有最大值的条件是抛物线开口向下,即m+2<0。
抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。
强化练习;已知函数是二次函数,其图象开
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com