1.理解三角形全等的判定,并会运用它们解决实际问题.
2.经历探索三角形全等的四种判定方法的过程,能进行合情推理.
3.培养良好的几何思维,体会几何学的应用价值.
教学
重点
运用四个判定三角形全等的方法.
教学
难点
正确选择判定三角形全等的方法,充分应用“综合法”进行表达.
教学
过程
教 学 内 容
一、回顾反思
【课堂演练】
1.已知△ABC≌△A′B′C′,且∠A=48°,∠B=33°,A′B′=5cm,求∠C′的度数与AB的长.
【教师活动】操作投影仪,组织学生练习,请一位学生上台演示.
【学生活动】先独立完成演练1,然后再与同伴交流,踊跃上台演示.
解:在△ABC中,∠A+∠B+∠C=180°
∴∠C=180°-(∠A+∠B)=99°
△ABC≌△A′B′C′,∠C=∠C′,
∴∠C′=99°,
∴AB=A′B′=5cm.
【评析】表示两个全等三角形时,要把对应顶点的字母写在对应位置上,这时解题就很方便.
2.已知:如图1,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,连接AO,∠1=∠2.
求证:∠B=∠C.
【思路点拨】要证两个角相等,我们通常用的办法有:(1)两直线平行,同位角或内错角相等;(2)全等三角形对应角相等;(3)等腰三角形两底角相等(待学).
根据本题的图形,应考虑去证明三角形全等,由已知条件,可知AD=AE,∠1=∠2,AO是公共边,叫△ADO≌△AEO,则可得到OD=OE,∠AEO=∠ADO,∠EOA=∠DOA,而要证∠B=∠C可以进一步考查△OBE≌△OCD,而由上可知
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com