一、 教学目标设置
知识与技能:
1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
过程与方法:
1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:
1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。
二 教学重、难点
重点:探索和证明勾股定理 难点:用拼图方法证明勾股定理
三、学情分析
学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
四、教学策略
本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
五、教学过程
教学环节
教学内容
活动和意图
创设情境导入新课
以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象.而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段VCR说明原因。
[设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。
新知探究
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。
(1)同学们,请你也来观察下图中的地面,看看能发现些什么?
(2)你能找出图18.1-1中正方形1、2、3面积之间的
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com