设为首页 - 加入收藏
您的当前位置: 快读网 > 优秀教案 > 数学教案 > 八年级 > 正文

:八年级数学上册14.2勾股定理的应用(2)教案(华东师大版)

来源:快读网 编辑:秩名 时间:2020-03-01
:14.2勾股定理的应用(2)
教学目标:
1.会用勾股定理解决较综合的问题.
2.树立数形结合的思想.
教学重点
勾股定理的综合应用.
教学难点
勾股定理的综合应用.
教学过程
一、课前预习
1.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______.
解:设底边长为2x,则腰长为16-x,有(16-x)2=82+x2,x=6,
∴S=×2x×8=48.
2.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:
(1)使三角形的三边长分别为3. 、 (在图甲中画一个即可);
(2)使三角形为钝角三角形且面积为4(在图乙中画一个即可).
 
二、合作探究
问题探究1:边长为无理数
例1:如图,在3×3的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:
 
(1)画出所有从点A出发,另一端点在格点(即小正方形的顶点)上,且长度为 的线段;
(2)画出所有的以(1)中所画线段为腰的等腰三角形.
教师分析只需利用勾股定理看哪一个矩形的对角线满足要求.
解:(1)如下图中,AB.AC.AE.AD的长度均为 .
(2)如下图中△ABC.△ABE.△ABD.△ACE.△ACD.△AED就是所要画的等腰三角形.
 
问题探究2:不规则图形面积的求法
例2:如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.求图中阴影部分的面积.
 
解:在Rt△ADC中,
AC =AD +CD =6 +8=100(勾股定理),
∴AC=10m.
∵AC +BC =10 +24 =676=AB ,
∴△ACB为直角三角形(如果三角形的三边长A.B.c有关系:a +b =c ,那么这个三角形是直角三角形),
∴S阴影部分=S△ACB-S△ACD
= ×10×24- ×6×8=96(m ).
三、课堂巩固
(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲,它是由四个相同的直角三角形与中间的
八年级数学上册14.2勾股定理的应用(2)教案(华东师大版)
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为rar格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top