设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 中考试题 > 数学 > 正文

:2020年中考数学真题分类汇编第二期专题23直角三角形与勾股定理试题含解析

来源:快读网 编辑:秩名 时间:2020-04-21
:直角三角形与勾股定理
一.选择题
1.(2018•江苏淮安•3分)如图,菱形ABCD的对角线AC.BD的长分别为6和8,则这个菱形的周长是(  )
A.20 B.24 C.40 D.48
【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
【解答】解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
则AB==5,故这个菱形的周长L=4AB=20.
故选:A.
【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
2.(2018•山东东营市•3分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是(  )
A. B. C. D.
【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.
【解答】解:把圆柱侧面展开,展开图如右图所示,点A.C的最短距离为线段AC的长.
在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,
所以AC=,
故选:C.
【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.
3.(2018•湖州•3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是(  )
A. AE=EF            B. AB=2DE
C. △ADF和△ADE的面积相等    D. △ADE和△FDE的面积相等
【答案】C
【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.
详解:如图,连接CF,
点D是BC中点,
∴BD=CD,
由折叠知,∠
2020年中考数学真题分类汇编第二期专题23直角三角形与勾股定理试题含解析
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top