设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 中考试题 > 数学 > 正文

:2020届中考数学知识点《二次函数综合》强化练习卷

来源:快读网 编辑:秩名 时间:2020-04-13
:二次函数综合题
1.(2019南宁)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,–1).
(1)直接写出A,B的坐标和抛物线C2的解析式;
(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;
(3)如图2,点F(–6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.
解:(1)C1顶点在C2上,C2顶点也在C1上,
由抛物线C1:y1=x2+x可得A(–2,–1),
将A(–2,–1),D(6,–1)代入y2=ax2+x+c
得,解得 ,
∴y2=–x2+x+2,∴B(2,3);
(2)易得直线AB的解析式:y=x+1,
①若B为直角的顶点,BE⊥AB,kBE•kAB=–1,
∴kBE=–1,则直线BE的解析式为y=–x+5.
联立,
解得或,此时E(6,–1);
②若A为直角顶点,AE⊥AB,kAE•kAB=–1,
∴kAE=–1,则直线AE的解析式为y=–x–3,
联立,
解得或,
此时E(10,–13);
③若E为直角顶点,设E(m,–m2+m+2)
由AE⊥BE得kBE•kAE=–1,
即,
解得m=2或–2(不符合题意均舍去),
∴存在,∴E(6,–1)或E(10,–13);
(3) y1≤y2,观察图形可得:x的取值范围为–2≤x≤2,
设M(t,t2+t),N(t,−t2+t+2),且–2≤t≤2,
易求直线A
2020届中考数学知识点《二次函数综合》强化练习卷
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top