限时规范训练(限时练·夯基练·提能练)
A级基础夯实练
1。(2018·临川模拟)如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a。则一定能确定A,B间的距离的所有方案的序号为()
A.①②B.②③
C.①③D.①②③
解析:选D。对于①③可以利用正弦定理确定唯一的A,B两点间的距离,对于②直接利用余弦定理即可确定A,B两点间的距离.
2.(2018·广西五校联考)一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()
A.10海里B.10海里
C.20海里D.20海里
解析:选A。画出示意图如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ABC=40°+65°=105°,∴∠ACB=45°,
根据正弦定理得=,
解得BC=10(海里).
3.(2018·昆明检测)一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()
A.50mB.100m
C.120mD.150m
解析:选A。作出示意图如图所示,设水柱高度是hm,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,在Rt△BCD中,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m。
文档为doc格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
附近文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com