:
【课时训练】第29节 等比数列及其前n项和
一、选择题
1.(2018贵州遵义四中段测)设数列{an}满足2an=an+1(n∈N*),且前n项和为Sn,则的值为( )
A. B.
C.4 D.2
【答案】A
【解析】由题意知,数列{an}是以2为公比的等比数列,故==.故选A.
2.(2018河南名校联考)在各项均为正数的等比数列{an}中,a1=3,a9=a2a3a4,则公比q的值为( )
A. B.
C.2 D.3
【答案】D
【解析】由a9=a2a3a4得a1q8=aq6,所以q2=a.因为等比数列{an}的各项都为正数,所以q=a1=3.
3.(2018辽宁沈阳二中质检)在等比数列{an}中,a5a11=3,a3+a13=4,则=( )
A.3 B.-
C.3或 D.-3或-
【答案】C
【解析】根据等比数列的性质得化简得3q20-10q10+3=0,解得q10=3或,所以==q10=3或.
4.(2018江苏泰州模拟)已知各项均是正数的等比数列{an}中,a2,a3,a1成等差数列,则的值为( )
A. B.
C.- D.或
【答案】B
【解析】设{an}的公比为q(q>0).由a3=a2+a1,得q2-q-1=0,解得q=.从而=q=.
5.(2018广东珠海综合测试)在数列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比为2的等比数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】B
【解析】当an=0时,也有an=2an-1,n=2,3,4,…,但{an}不是等比数列,因此充分性不成立;当{an}是公比为2的等比数列时,有=2,n=2,3,4,…,即an=2an-1,n=2,3,4,…,所以必要性成立.故选B.
6.(2019辽宁盘锦高中月考)已知等比数
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。