第4章 因式分解
4.1 因式分解
知识点1 因式分解
一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,有时也把这一过程叫做分解因式.
[注意] (1)因式分解的对象必须是一个多项式;
(2)因式分解的结果必须是几个整式的积的形式.
一般有两种形式:①单项式×多项式;
②多项式×多项式.
(3)因式分解是一个恒等变形
1.下列等式从左到右的变形是因式分解的是( )
A.6a2b=3a·2ab
B.(x+2)(x-2)=x2-4
C.2x2-4x-1=2x(x-2)-1
D.2ab-2ac=2a(b-c)
知识点2 因式分解与整式乘法的关系
a(b+c+d)ab+ac+ad.
因式分解与整式乘法的相互关系——互逆变形.
从右到左是因式分解,其特点是由和差形式(多项式)转化成整式的积的形式;从左到右是整式乘法,其特点是由整式的积的形式转化成和差形式(多项式).
2.检验下列因式分解是否正确.
(1)-a2b2+4=(ab+2)(ab-2);
(2)5ax2+10ax-15a=5a(x-1)(x+3);
(3)9y2-6y+9=3(y-1)2.
探究 一 因式分解的简单应用
教材补充题已知x2+mx-6可以分解为(x-2)(x+3),求m的值.
[归纳总结] 因式分解与多项式的乘法是互逆变形式,可以用整式的乘法得到对应系数相等,求出未知数的值.
探究 二 利用因式分解进行简便运算
教材课内练习第2题变式题用简便方法计算:
(1)492+49;(2)(8)2-(3)2.
[反思] 已知多项式-9x3+12x2-6x因
文档为rar格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com