湖南师大附中2019届高三月考试卷(三)
数 学(理科)
命题人:朱海棠 贺祝华 张天平 欧阳普
审题:高三数学备课组
时量:120分钟 满分:150分
一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.
1.已知复数z=21+i+2i,则下列结论中正确的是(C)
A.z的虚部为i B.|z|=2 C.z2为纯虚数 D.z=-1+i
【解析】由已知,z=2(1-i)(1+i)(1-i)+2i=1+i,则z的虚部为1,|z|=2,z2=2i为纯虚数,z=1-i,故选C.
2.设x∈R,若“|x-a|<1(a∈R)”是“x2+x-2>0”的充分不必要条件,则a的取值范围是(A)
A.(-∞,-3]∪[2,+∞) B.(-∞,-3)∪(2,+∞)
C.(-3,2) D.[-3,2]
【解析】由|x-a|<1(a∈R),解得:a-1<x<a+1.
由x2+x-2>0,解得x>1或x<-2.
又“|x-a|<1(a∈R)”是“x2+x-2>0”的充分不必要条件,
∴1≤a-1或a+1≤-2,即a≥2,或a≤-3.故选A.
3.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系上的坐标,则确定的不同点的个数为(C)
A.6 B.32 C.33 D.34
【解析】不考虑限定条件确定的不同点的个数为C12C13A33=36,但集合B、C中有相同元素1,
由5,1,1三个数确定的不同点的个数只有三个,故所求的个数为36-3=33个,故选C.
4.设l、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列4个命题:(B)
①若m∥l,且m⊥α,则l⊥α;
②若m∥l,且m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=m,β∩γ=l,α∩γ=n,且n∥β,则m∥l.
文档为rar格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
附近文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com