:
专题09不等式
考纲解读
三年高考分析
1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3.二元一次不等式组与简单线性规划问题
(1)会从实际情境中抽象出二元一次不等式组.
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
4.基本不等式: (a≥0,b≥0)
(1)了解基本不等式的证明过程.
(2)会用基本不等式解决简单的最大(小)值问题.
不等式的解法和基本不等式 是考查的重点,解题时常用到不等式的变形,等价转化的数学思想,根的分布问题,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.
1、以理解一元二次不等式的解法为主,常与集合的运算相结合考查一元二次不等式的解法,有时也在导数的应用中用到,加强函数与方程思想,分类讨论思想和数形结合思想的应用意识.本节内容在高考中常以选择题的形式考查,属于低档题,若在导数的应用中考查,难度较高.
2、以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识.本节内容在高考中以选择、填空题的形式进行考查,难度中低档.
3、理解基本不等式成立的条件,会利用基本不等式求最值.常与函数、解析几何、不等式相结合考查,加强数形结合、分类讨论、转化与化归等数学思想的应用意识.作为求最值的方法,常在函数、解析几何、不等式的解答题中考查,难度中档.
1.【2019年天津理科02】设变量x,y满足约束条件则目标函数z=﹣4x+y的最大值为( )
A.2 B.3 C.5 D.6
【解答】解:由约束条件作
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。