设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 中学数学 > 初三下册 > 期末复习 > 正文

:2018年中考数学真题分类汇编第三期--操作探究试题(带解析)

来源:快读网 编辑:秩名 时间:2020-03-01
:操作探究
一.填空题
1.(2018•辽宁大连•3分)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为      .
 
解:如图作A′H⊥BC于H.
 
∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H= BA′=1,BH= A′H= ,∴CH=3﹣ .
∵△CDF∽△A′HC,∴  = ,∴  = ,∴DF=6﹣2 .
 故答案为:6﹣2 .

二.解答题
1. (2018•湖北江汉•10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 BC=DC+EC ;
探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
 
【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定
2018年中考数学真题分类汇编第三期--操作探究试题(带解析)
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为rar格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top