设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 高考试题 > 数学 > 正文

:2020年北京数学(理科)高考试题及答案(word版)

来源:快读网 编辑:秩名 时间:2020-06-08
:2020年普通高等学校招生全国统一考试
理科数学试题参考答案
一、选择题
1.A 2.D 3.B 4.D 5.C 6.C 7.C 8.D
二、填空题
9. 10. 11. 12.3
13.y=sinx(答案不唯一) 14.
三、解答题
(15)(共13分)
解:(Ⅰ)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.
由正弦定理得=,∴sinA=.
∵B∈(,π),∴A∈(0,),∴∠A=.
(Ⅱ)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.
如图所示,在△ABC中,∵sinC=,∴h==,
∴AC边上的高为.

(16)(共14分)
解:(Ⅰ)在三棱柱ABC-A1B1C1中,
∵CC1⊥平面ABC,
∴四边形A1ACC1为矩形.
又E,F分别为AC,A1C1的中点,
∴AC⊥EF.
∵AB=BC.
∴AC⊥BE,
∴AC⊥平面BEF.
(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.
又CC1⊥平面ABC,∴EF⊥平面ABC.
∵BE平面ABC,∴EF⊥BE.
如图建立空间直角坐称系E-xyz.

由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).
∴,
设平面BCD的法向量为,
∴,∴,
令a=2,则b=-1,c=-4,
∴平面BCD的法向量,
又∵平面CDC1的法向量为,
∴.
由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.
(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),
∴,∴,∴与不垂直,
∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.
(17)(共12分)
解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,
第四类电影中获得好评的电影部数是200×0.25=50.
故所求概率为.
(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,
事件B为“从第五类电影中随机选出的电影获得好评”.
故所求概率为P()=P()+P()
=P(A)(1–P(B))+(1–P(A))P(B).
由题意知:P(A)估计为0.25,P(B)估计为0.2.
故所求概率估计为0.25×0.8+0.75×0.2=0.35.
(Ⅲ)>>=>>.
(18)(共13分)
解:(Ⅰ)因为=[],
所以f ′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)
=[ax2–(2a+1)x+2]ex.
f ′(1)=(1–a)e.
由题设知f ′(1)=0,即(1–a)e=0,解得a=1.
此时f (1)=3e≠0.
所以a的值为1.
(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.
若a>,则当x∈(,2)时,f ′(x)<0> 当x∈(2,+∞)时,f ′(x)>0.
所以f (x)<0 x=2处取得极小值.> 若a≤,则当x∈(0,2)时,x–2<0> 所以f ′(x)>0.
所以2不是f (x)的极小值点.
综上可知,a的取值范围是(,+∞).
(19)(共14分)
解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),
所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
由题意可知直线l的斜率存在且不为0,
设直线l的方程为y=kx+1(k≠0).
由得.
依题意,解得k<0> 又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.
所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
(Ⅱ)设A(x1,y1),B(x2,y2).
由(I)知,.
直线PA的方程为y–2=.
令x=0,得点M的纵坐标为.
同理得点N的纵坐标为.
由,得,.
所以.
所以为定值.
(20)(共14分)
解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以
M(α,α)= [(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,
M(α,β)= [(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.
(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.
由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,
所以x1,x 2,x3,x4中1的个数为1或3.
所以B{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.
将上述集合中的元素分成如下四组: 
(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).
经验证,对于每组中两个元素α,β,均有M(α,β)=1.
所以每组中的两个元素不可能同时是集合B的元素.
所以集合B中元素的个数不超过4.
又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,
所以集合B中元素个数的最大值为4.
(Ⅲ)设Sk=( x1,x 2,…,xn)|( x1,x 2,…,xn)∈A,xk =1,x1=x2=…=xk–1=0)(k=1,2,…,n),
Sn+1={( x1,x 2,…,xn)| x1=x2=…=xn=0},
则A=S1∪S1∪…∪Sn+1.
对于Sk(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.
所以Sk(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.
所以B中元素的个数不超过n+1.
取ek=( x1,x 2,…,xn)∈Sk且xk+1=…=xn=0(k=1,2,…,n–1).
令B=(e1,e2,…,en–1)∪Sn∪Sn+1,则集合B的元素个数为n+1,且满足条件.
故B是一个满足条件且元素个数最多的集合.
2020年北京数学(理科)高考试题及答案(word版)
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为docx格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top