:舟山市2018学年第二学期期末检测 高二数学试题卷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则( ) A. B. C. D. 【答案】D 【解析】 【分析】 通过并集运算即可得到答案. 【详解】根据题意,可知,故,故选D. 【点睛】本题主要考查集合的并集运算,难度很小.
2.若,则“”是“”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分又不必要条件 【答案】A 【解析】 【分析】 通过充分必要条件的定义判定即可. 【详解】若,显然;若,则,所以“”是“”的充分而不必要条件,故选A. 【点睛】本题主要考查充分必要条件的相关判定,难度很小.
3.已知是虚数单位,若,则的共轭复数等于( ) A. B. C. D. 【答案】C 【解析】 【分析】 通过分子分母乘以分母共轭复数即可化简,从而得到答案. 【详解】根据题意,所以,故选C. 【点睛】本题主要考查复数的四则运算,共轭复数的概念,难度较小.
4.已知等差数列的前项和为,若,则( ) A. 36 B. 72 C. 91 D. 182 【答案】C 【解析】 【分析】 通过等差数列的性质可得,从而利用求和公式即可得到答案. 【详解】由得,,即,所以 ,故选C. 【点睛】本题主要考查等差数列的性质,难度不大.
5.已知函数的导函数的图像如图所示,则( )
A. 有极小值,但无极大值 B. 既有极小值,也有极大值 C. 有极大值,但无极小值 D. 既无极小值,也无极大值 【答案】A 【解析】 【分析】 通过导函数大于0原函数为增函数,导函数小于0原函数为减函数判断函数的增减区间,从而确定函数的极值. 【详解】由导函数图像可知:导函数在上小于0,于是