《数学广角──植树问题》同步试题
一、填空
1.学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵,有( )个间隔。如果两端都各栽一棵树,那么共需( )棵树苗;如果两端都不栽树,那么共需( )棵树苗;如果只有一端栽树,那么共需( )棵树苗。
考查目的:考查在一条线段上植树问题的三种情况,正确区分植树棵数和间隔数之间的三种关系。
答案:20;21;19;20。
解析:先用60÷3求出有20个间隔,再根据在一条线段上植树问题的三种情况的数学模型来解答:如果两端都植树,棵数=间隔数+1;如果两端都不植树,棵数=间隔数-1;如果一端植一端不植,棵数=间隔数。
2.把10根橡皮筋连接成一个圈,需要打( )个结。
考查目的:考查在封闭曲线上的植树问题(间隔数=植树棵数)。
答案:10。
解析:首先明确这道题是在封闭曲线上的植树问题,有10根橡皮筋相当于间隔数是10,打结的个数就相当于植树棵数。因为在封闭曲线上间隔数=植树棵数,所以打结的个数是10。
3.在一个正方形的每条边上摆4枚棋子,四条边上最多能摆( )枚,最少能摆( )枚。
考查目的:考查封闭图形的植树问题中,角上是否植树会决定植树的总棵树。
答案:16;12。
解析:正方形每条边上摆4枚棋子,有两种摆法:四个角都摆棋子和四个角都不摆棋子。当四个角都不摆棋子时,四条边上摆的棋子最多,一共能摆4×4=16枚棋子;当四个角都摆棋子时,角上的棋子同时属于相邻的两条边,这时摆的棋子总数最少,要减去角上重复的4枚棋子,所以最少能摆4×4-4=12枚棋子。
4.豆豆和玲玲同住一幢楼,每层楼之间有20 级台阶,豆豆住二楼,玲玲住五楼。豆豆要从自己家到玲玲家去找她玩,需要走(
文档为rar格式
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。
相关文章:
快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com