设为首页 - 加入收藏
您的当前位置: 快读网 > 考试试题 > 中学数学 > 初三下册 > 其他 > 正文

:全国初中数学竞赛辅导(初2)第26讲含参数的一元二次方程的整数根问题

来源:快读网 编辑:秩名 时间:2021-06-09
:

第二十六讲 含参数的一元二次方程的整数根问题

对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法.

例1 m是什么整数时,方程(m2-1)x2-6(3m-1)x+72=0有两个不相等的正整数根.

解法1 首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得由于x1,x2是正整数,所以m-1=1,2,3,6,m+1=1,2,3,4,6,12,

解得m=2.这时x1=6,x2=4.解法2 首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即m2=3,4,5,7,9,10,13,19,25,37,73,只有m2=4,9,25才有可能,即m=±2,±3,±5.

经检验,只有m=2时方程才有两个不同的正整数根.

说明 一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法.

例2 已知关于x的方程a2x2-(3a2-8a)x+2a2-13a+15=0(其中a是非负整数)至少有一个整数根,求a的值.

分析 “至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来.

全国初中数学竞赛辅导(初2)第26讲含参数的一元二次方程的整数根问题
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为rar格式

版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:1234567890@qq.com,我们立即下架或删除。

上一篇: 初三毕业考试数学试题(卷)
下一篇:

相关文章:

热点图文

快读网 www.kuaidu.com.cn 网站邮箱:wodd7@hotmail.com

Copyright © 2002-2020 KUAIDU. 快读网 版权所有

Top